High-resolution Fourier light-field microscope

Researchers from the Georgia Institute of Technology and Emory University, extend the performances of Fourier lightfield concept by presenting the high-resolution Fourier light-field microscope (HR-FLM), which allows, among other applications, the fast and volumetric live-cell imaging.

Fourier lightfield microscopes (FLM) have the ability of capturing directly, in a single shot, a collection of orthographic perspective images, all with the same point spread function (PSF). Thus, deconvolution procedures are feasible and easily applicable. The authors of this paper take profit from these facts to go a step further in the limits achievable by of FLM.

To do this, the authors use a microscope objective with the highest NA ever used in FLM. Additionally, the microlens array is set in such a way that the aperture stop is fully covered by only three microlenses. These two facts give rise to perspective images with submicron resolution. Finally, an inverse computational process is implemented to retrieve the volume of the object through a wave-optics based Richardson–Lucy deconvolution of the perspective images and the 3D PSF.

Imaging mitochondria in fixed mammalian cells using HR-FLFM.

Authors show experiments that confirm that this FLM scheme allows to reconstruct the 3D image of sparse samples using a single camera frame, recovering a volume of 70µm x 10µm x 4µm, with lateral resolution of 0,5µm and axial resolution of 1,5 µm.

To conclude, authors anticipate HR-FLFM to offer a promising paradigm for interrogation of complex intracellular biomolecules, organelles, and microenvironments that underlie diverse spatiotemporal regulations of cellular processes and functions.

Commented by Dr. Manuel Martínez

Learn More

Need 3D real-time images of your microscopic samples? DOIT 3D Micro is available!

No more need to wait! Finally, DOIT 3D Micro is available! we are manufacturing the first MVP series to be delivered for early adopters. However, we are already accepting purchases on backorder and the units will be delivered in around one month.

We are overwhelmed with the nice feedback from many users. They did not think getting 3D information from their microscopic samples could be that easy and straightforward. Our plenoptic eyepiece is inserted into the ocular port (in the near future also in the trinocular) to replace the observer’s eye and transform that 2D image into a 3D multi perspectives views. This allows the user to get an “Extended Depth of Focus” (EDOF) of the sample immediately without the need for refocusing. Also, it allows seeing orthographic views to resolve angular information.

Doit 3D Micro makes 3D real-time microscopy easy!


Our system is so convenient for many applications. The user does not have to learn difficult processes or do the complex setups of other 3D microscopy techniques. Besides, most of the tools that the user applies habitually can be implemented too while using the DOIT 3D Micro. Another big advantage is sample handling and preparation. Most of the tools that get 3D information from the sample require delicate and long preparations. That increases substantially the risk of failure and therefore a huge waste of time and resources.

Real-time 3D microscope for all

One of the biggest advantages of the Plenoptic Eyepiece is 4D imaging. That means that the user is able to get information in the XYZ axis and also in real-time through the acquisition of videos. This is a huge leap for all those technicians and researchers who have dynamic events happening within their samples at a fast pace. Time-lapse imaging is not enough for them but the lightfield microscope they’ll get by attaching the DOIT 3D Micro will allow seeing the 4 dimensions. Just think about particle tracking velocimetry, neural activities monitoring, live-cell imaging reducing bleaching and phototoxicity, applying forces or chemicals to samples or materials to evaluate their response, etc… every movement within the microscopic sample can be acquired and displayed!

3D microscopy for all

Reach us for more information! We will be very happy to understand which your 3D / 4D imaging needs and evaluate if we can help you by transforming your current microscope into a 3D lightfield microscope implementing the DOIT 3D Micro plenoptic eyepiece.

#LetsDOIT3D !

New call-to-action

Learn More

BeAble Capital completes early-stage investment round on Doitplenoptic

The opportunities that science will provide to us are endless. Investing in science and knowledge is key to our future. The current COVID19 crisis has demonstrated that the only way of facing challenges is science. We are firm believers in science. We truly believe that knowledge has to be accessible to the society and everyone should be able to get all the benefits out of it.

Learn More

DOIT 3D Micro official launch approaching

Doitplenoptic will bring you very soon the first plenoptic ocular: DOIT 3D MICRO. This device is placed in the microscope eyepiece port and allows you to convert your microscope into a 3D microscope. No matter which brand you are using, if you need 3D information, you get it right away by inserting our plenoptic eyepiece!

We have a highly qualified R&D team and scientific advisory of Manuel Martínez-Corral and Genaro Saavedra, co-directors of the Image and 3D Display Laboratory of the University of Valencia. We have been working together since 2018th to develop the technology behind the eyepiece.

DOIT 3D Micro and Lightfield technology

Plenoptic photography, also known as integral imaging or lightfield imaging, consists of recording multiple perspectives of a 3D scene through an array of lenses. This way, the three-dimensional information is stored with single shotD allowing to register 3d images in real-time.DOIT® (Digital Optical Imaging Technology) is based on a paradigm shift in the capture of the plenoptic information. Conventional plenoptic systems capture low-resolution images close to the lens array; DOIT’s technology does it virtually at infinity with an improved lateral and axial resolution and higher depth of field.

Over this paradigm shift, DOIT® has developed a universal, versatile, affordable, and handy device: The DOIT 3D Micro eyepiece.

  • DOIT 3D Micro eyepiece can be used with any microscope,
  • Thanks to DOIT®, microscopists get seamless integration working with the objectives in the nosepiece,
  • Zero complexity, little investment, great results.

Stay attend to the launch of our device! DOIT 3D Micro will be available on the market very soon, and if you want to be one of the first users, do not hesitate to contact us.

Learn More

Miniscope3D: miniature fluorescence microscope

K. Yanny, N. Antipa, W. Liberti, S. Dehaeck, K. Monakhova, F. L. Liu, K. Shen, Ren Ng, and L. Waller, “Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy,” Light Sci Appl. 9, 171 (2020). https://doi.org/10.1038/s41377-020-00403-7

Under the leadership of Laura Waller, researchers from the University of California, Berkeley, have reported a lightfield miniscope that is much smaller and lighter than previous ones, and that provides with 3D images with unprecedent resolution over a very large depth of field.

The 3D miniscope is based in the smart combination of three bright ideas: the Fourier lightfield concept, the use of an optimized multifocal phase mask, and the application of a rendering algorithm based on sparsity-constrained inverse methods

Based on those concepts, authors have built a demonstration prototype composed basically by a GRIN-lens objective, a phase mask inserted at the Fourier plane and a CMOS sensor placed at the mean focal length of the phase mask. With this prototype, authors have demonstrated the capability of render 3D images of sparse fluorescent samples with lateral resolution of  across a depth of 2,76µm across a depth of 390µm.

In this paper the Miniscope3D demonstrates its utility providing 3D images of mouse brain tissue and also of freely moving tardigrades. In summary, the miniscope3D provides single-shot 3D imaging for applications where a compact platform matters, such as volumetric neural imaging in freely moving animals and 3D motion studies of dynamic samples in incubators and lab-on-a-chip devices.

Commented by Dr. Manuel Martínez

Learn More

Plenoptic eyepiece. Transform any microscope into a 3D microscope

Doitplenotic will attend Focus on Microscopy 2021. Our scientific advisor Genaro Saavedra will present the paper titled “Plenoptic eyepiece. Transform any microscope into a 3D microscope”.

FOM2021 online will be the continuation of a yearly conference series on the latest innovations and developments in mostly optical microscopy and their application in biology, medicine, and the material sciences.

Key subjects for the conference series are the theory and practice of 3D optical imaging, related 3D image processing, and especially developments in resolution and imaging modalities. The conference series covers also the rapidly advancing fluorescence labeling techniques for confocal and multi-photon 3D imaging of -live- biological specimens.

Plenoptic eyepiece

Lightfield or plenoptic cameras are based on integral-photography concept and this can be applied to optical microscopy, but in the recent year a new architecture for lightfield microscopy has been proposed, it is named: Fourier lightfield, this scheme is based on collecting the spatio-angular field at the Fourier plane of the microscope [1].

The plenoptic eyepiece is based on Fourier lightfield, this is a portable, plug-and-play device that, after inserted at the ocular port, converts any conventional optical microscope into a lightfield microscope, with the best performance in terms of resolution and depth of field and allows you transform any microscope into a 3D microscope.

Learn More

Lightfield microscopy, a technique to study neural activities

Z. Zhang, L. Cong, L. Bai, and K. Wang, “Light-field microscopy for fast volumetric brain imaging,” Journal of Neuroscience Methods 352, 109083 (2021)

Researchers of the Center for Excellence in Brain Science and Intelligence Technology (Shanghai) have published this interesting paper in which a review of techniques for volumetric brain imaging is made.

Recording neural activities over large populations are critical for a better understanding of the functional mechanisms of animal brains. In this sense, the authors review different inspection techniques starting from those based on 3D scannings, like two-photon microscopy, which has the problem of low process speed and high light density. Another possibility, based on parallelizing the imaging process, is light-sheet microscopy which still has the problem requiring axial scanning.

Light-field-3d-microscopy for fast volumetric-brain-imaging

Confocal LFM (Zhang et al., 2020). MIPs over time of representative planes in reconstructed volumes in larval zebrafish brain (HuC: GCaMP6s). Scale bars, 50 μm.

In author’s opinion, lightfield microscopy (LFM) solves these problems elegantly by recording both the direction and location of light rays and achieving scanning-free and instantaneous volumetric imaging with a single camera exposure. However, this is made at the cost of a poor spatial resolution. But this drawback is overcome with the Fourier lightfield (FLFM) configuration, which shows substantially enhanced performance compared to that of conventional LFMs, including a lack of reconstruction artifacts near the focal plane, improved 3D reconstruction performance, and significantly reduced computational cost.

The paper finishes by collecting the results of LFM and FLFM when applied to brain images of different animals, like drosophila, zebrafish, or mouse. These results confirm the great utility of Fourier lightfield microscopy for brain imaging.

Commented by Dr. Manuel Martínez

Learn More

Doitplenoptic gets NEOTEC grant for the development of a plenoptic eyepiece

El Centro para el Desarrollo Tecnológico Industrial, E.P.E. (CDTI) and the NEOTEC program grant our company the funding to carry out the project “PLENOPTIC EYEPIECE FOR 3D DIGITAL IMAGE for an amount of 250.000 €.

The CDTI-E.P.E. is a Public Business Entity dependent on the Ministry of Science and Innovation. It promotes innovation and technological development in Spanish companies.

The CDTI aim is to contribute to the improvement of the technological level of Spanish companies through the development of the following activities [1]:

  • The technical-economic evaluation and granting of public aid for innovation to develop R&D&I projects made by companies.
  • Management and promotion of Spanish participation in international technological cooperation programs.
  • Promotion of international transfer of business technology and support services for technological innovation.
  • Support for the creation and consolidation of technology-based companies.


The Neotec grant is an aid granted by CDTI of up to 250,000€. Its general aim is to finance the start-up of new business projects, which require the use of technologies or knowledge developed from research activity [2].

With the project “Plenoptic eyepieces for 3D digital imaging”, we will develop 3D imaging systems based on lightfield technology. With this imaging technology, the plenoptic eyepiece is an extremely versatile imaging device that allows you to convert any optical instrument with an eyepiece port into a 3D digital imaging instrument.

We will develop the commercial version of a plenoptic eyepiece for microscopy and the high resolution customized version for specific microscopes. We will accelerate the processing time of the modules and develop new algorithms for image processing, reconstruction, visualization, and analysis based on physical fundamentals with the support of artificial intelligence.

Learn More

Doitplenoptic sponsors FOM 2021 Online Conference

The FOM conferences constitute an effective meeting point for developers and users working in this rapidly evolving field of microscopy and 3D imaging, playing an important role in the dissemination of information about new developments

Learn More

2020 a year of recognitions for Doitplenoptic

Despite the 2020 difficulties, Doitplenoptic has obtained several recognitions for its innovative project

Learn More